
1

Intel® NUC
Programming for the Custom Solutions Header

Whitepaper

V1.0

September 2016

Intel NUC models DE3215TYx, NUC5i3MYx and NUC5i5MYx may contain design defects or errors known as errata that may cause the product to

deviate from published specifications. Current characterized errata, if any, are documented in their respective Intel NUC Specification Updates.

2

Revision History

Revision Revision History Date

1.0 Initial release of the Intel NUC Custom Solutions Header Programming Whitepaper September 2016

Disclaimer

This product specification applies to only the standard Intel NUC models DE3815TYx, NUC5i3MYx and

NUC5i5MYx.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE,

EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED

BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH

PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED

WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES

RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,

COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS OTHERWISE AGREED IN WRITING BY INTEL,

THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF

THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

All Intel NUC Boards are evaluated as Information Technology Equipment (I.T.E.) for use in personal computers (PC) for

installation in homes, offices, schools, computer rooms, and similar locations. The suitability of this product for other PC or

embedded non-PC applications or other environments, such as medical, industrial, alarm systems, test equipment, etc. may

not be supported without further evaluation by Intel.

Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property

rights that relate to the presented subject matter. The furnishing of documents and other materials and information does not

provide any license, express or implied, by estoppel or otherwise, to any such patents, trademarks, copyrights, or other

intellectual property rights.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.”

Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising

from future changes to them.

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor

family, not across different processor families: Go to:

Learn About Intel® Processor Numbers

Intel NUC may contain design defects or errors known as errata, which may cause the product to deviate from published

specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your product order.

Intel, the Intel logo, Intel NUC and Intel Core are trademarks of Intel Corporation in the U.S. and/or other countries.

* Other names and brands may be claimed as the property of others.

Copyright 2016 Intel Corporation. All rights reserved.

http://www.intel.com/products/processor_number
http://www.intel.com/products/processor_number

3

Table of Contents

Contents
1.0 Introduction .. 5

2.0 Hardware ... 6

2.1 Intel NUC DE3815TY ... 6

2.2 Intel NUCs NUC5i3MY and NUC5i5MY ... 7

3.1 BIOS Setup ... 8

3.2 Operating System Driver Setup ... 8

3.2.1 Microsoft Windows I2C/GPIO drivers .. 9

3.2.2 Linux I2C/GPIO drivers .. 9

3.3 Operating System API Setup.. 9

3.3.1 Microsoft Windows I2C/GPIO API collateral ... 9

3.3.2 Linux I2C/GPIO API collateral ... 9

3.4 Code Samples .. 10

3.4.1 Linux GPIO .. 10

3.4.2 Linux I2C .. 13

3.4.3 Linux PWM (DE3815TY only) .. 13

4

Preface

The Intel NUC: Programming for the Custom Solutions Header whitepaper provides

information for the experienced programmer to access additional features on certain Intel

NUC models. It is not intended to cover programming basics but will provide links to Intel

and non-Intel sources for additional information, including code samples. Intel provides

these as examples only and makes no claim as to the viability of these code samples. By

doing so, the user assumes all risk, inherent or otherwise.

Common Notation

Used after a signal name to identify an active-low signal (such as USBP0#)

API Application Programming Interface

BIOS Basic Input / Output System

CSH Custom Solutions header

GPIO General Purpose Input/Output

I2C Inter-Integrated Circuit

PWM Pulse-Width Modulation

SCI/SMI System Control Interrupt/System Management Interrupt

* Symbol used to indicate other names and brands may be claimed as the property of others.

5

1.0 Introduction
Intel® NUC kits and boards are fully-featured mini-computers that conserve space and can

be placed anywhere at home or in office while displaying no loss in computing

performance. Several Intel NUC models go further by providing programmable features to

expand their capabilities. This whitepaper will serve as a guide to understanding the

available interfaces for accessing these programmable features.

Signal Purpose TY MY

1.8V, 3.3V, and

5V standby

Can be used to power custom solution (such as daughter card, etc.) with

up to 2 A of current rating capability per each of these voltages. Pins can

also be used to monitor the presence of 1.8V, 3.3V and 5V standby

power. Standby power is always on, even when board power is off.

 3.3V and

5V only

DMIC_CLK and

DMIC_Data
Clock output and data I/O for a digital microphone interface (DMIC)

HDMI Consumer

Electronics

Control (HDMI

CEC)

Provides the standard communication signal from the HDMI connector
(HDMI* home page). There is no HDMI CEC controller onboard; rather,
the HDMI CEC signal is exposed through this header for third party
solutions to monitor/control CEC activity between multiple HDMI devices.

HDMI-CEC adapters are available from vendors such as Pulse-Eight*.

I2C0_CLK and
I2C0_DATA

I2C1_CLK and
I2C1_DATA

Inter-Integrated Circuit (I2C) bus interface signals that allow connection

of low-speed peripherals. An I2C bus specification and user manual may

be found here.

PWM[0]

PWM[1]

Pulse-width modulation (PWM) signals that can be used to control

analog loads, such as motors or fans. The power rating capability per

each PWM signal is 5V at 250mA.

SCI/SMI
Interrupt

Provides the input for direct connection to a signal (such as a front panel
push-button) capable of triggering an OS-level command in Windows*
(formerly referred to by Microsoft as Direct Application Launch). The
voltage level I/O for this pin is 3.3V.

Refer to the Intel direct application launch utility to map triggered events
to Windows files.

SMB_CLK,

SMB_DATA, and

SMB_ALERT#

System Management Bus (SMBus) interface signals. General SMBus

information can be found on the platform EDS and at SMBus

Specifications.

Note: To enable these features, please use BIOS 0049 for DE3815TY, BIOS 0036 for

NUC5i3MY and BIOS 0029 for NUC5i5MY (or later).

The examples in this document have been tested using Ubuntu* 15.04.

http://www.hdmi.org/
http://www.pulse-eight.com/store/products/117-internal-hdmi-cec-adapter.aspx
http://www.nxp.com/documents/user_manual/UM10204.pdf
https://downloadcenter.intel.com/Detail_Desc.aspx?lang=eng&DwnldID=22035
http://smbus.org/specs/
http://smbus.org/specs/

6

2.0 Hardware
Programmable headers are available on several Intel NUC models, with some variations.

These variations are the result of customer feedback and the changing programming

environment. Our intent is to improve the capabilities of the NUC.

2.1 Intel NUC DE3815TY
The Intel NUC DE3815TY was designed with embedded uses in mind, enabling new

features previously unavailable via the Custom Solutions Header (CSH). It does this by

allowing the user to assign GPIO, I2C and PWM signals to specific I/O pins on the headers

in system BIOS. See Table 1 below for a listing of the CSH programmable pin

assignments.

Note: Please refer to the Intel NUC Board DE3815TYBE Technical Product Specification

for a more complete listing of headers and their signals. Refer to section 3.4.1 to

determine GPIO base address number and how Linux GPIO values are calculated.

Pin
Header signal

name GPIO signal
Linux
GPIO#

Alternate
function signal On-board circuit (GPIOs default to input)

10 SCI/SMI Interrupt N/A N/A RESERVED Output; 3.3V; 2.2k PU to 3.3VSB†

11 PWM[0] GPIO_[base+94] 504 SIO_PWM[0]
Output; 5V driver; 680ohm PU to 5V and 680ohm
PD to GND

12 PWM[1] GPIO_[base+95] 505 SIO_PWM[1]
Output; 5V driver; 680ohm PU to 5V and 680ohm
PD to GND

13 I2C0_CLK GPIO_[base+79] 489 SIO_I2C0_CLK
Bi-dir; 3.3V I/O; 2.2k PU to 3.3VSB

14 I2C0_DATA GPIO_[base+78] 488 SIO_I2C0_DATA
Bi-dir; 3.3V I/O; 2.2k PU to 3.3VSB

15 I2C1_CLK GPIO_[base+81] 491 SIO_I2C1_CLK
Bi-dir; 3.3V I/O; 2.2k PU to 3.3VSB

16 I2C1_DATA GPIO_[base+80] 490 SIO_I2C1_DATA
Bi-dir; 3.3V I/O; 2.2k PU to 3.3VSB

Table 1. DE3815TY Custom Solutions header programmable pins
†Note: FET gate not powered during standby

 Custom Solutions Header

http://www.intel.com/content/www/us/en/support/boards-and-kits/000005545.html?wapkw=de3815tybe++technical+product+spec

7

2.2 Intel NUCs NUC5i3MY and NUC5i5MY
The Intel NUC NUC5i3MY and NUC5i5MY are richly-featured commercial NUCs

available in both board and kit form, and contain a Custom Solutions header as well. The

programmable pins are listed in Table2 below.

Pin
Header signal

name GPIO Signal
Linux

GPIO #
Alternate

function signal On-board circuit (GPIOs default to input)

10 PCH_GPIO44 GPIO_[base+44] 462 N/A Bi-dir; unbuffered; 10k PU to 3.3VSB

11 PCH_GPIO24 GPIO_[base+24] 442 N/A Bi-dir; unbuffered; 10k PU to 3.3VSB

12 PCH_GPIO14 GPIO_[base+14] 432 SCI/SMI Interrupt Bi-dir; unbuffered; 10k PU to 3.3VSB

13 I2C0_CLK GPIO_[base+5] 423 I2C0_SCL Bi-dir; 3.3V I/O; 8.2k PU to 3.3V

14 I2C0_DATA GPIO_[base+4] 422 I2C0_SDA Bi-dir; 3.3V I/O; 8.2k PU to 3.3V

15 I2C1_CLK GPIO_[base+7] 425 I2C1_SCL Bi-dir; 3.3V I/O; 8.2k PU to 3.3V

16 I2C1_DATA GPIO_[base+6] 424 I2C1_SDA Bi-dir; 3.3V I/O; 8.2k PU to 3.3V

Table 2. NUC5i3MY and NUC5i5MY Custom Solutions header programmable pins

 Custom Solutions Header

8

3.0 Software

The programmable features of Intel NUCs are accessed through a combination of system

BIOS, operating system APIs and OS-level drivers. These may vary depending on the Intel

NUC model, the OS used and the particular subsystem being accessed.

3.1 BIOS Setup
In order for the Intel NUC to support the GPIO, I2C and PWM interfaces, the BIOS includes

specific settings in the “Legacy Device Configuration” pane found in the “Advanced” /

“Devices” / “Onboard Devices” page. Please ensure the Intel NUC is running the latest

BIOS for these interfaces to be accessible by the operating system.

In order to use GPIO signals:

• (Intel NUCs NUC5i3MY and NUC5i5MY only) “GPIO Lockdown” checkbox must be

cleared (i.e. disabled)

• Menu items under “Pin function select for Custom Solutions header” must be set to the

desired pin operation (GPIO or alternate function).

3.2 Operating System Driver Setup
Drivers for programming the GPIO and I2C interfaces under Windows and Linux operating

systems can be found via the Intel Download Center.

https://downloadcenter.intel.com/

9

3.2.1 Microsoft Windows I2C/GPIO drivers

Note: Make sure to enable the GPIO and I2C host controllers in the BIOS before the OS

drivers are installed; otherwise, driver installation may fail.

A. Windows 7 drivers:

a. DE3815TY: https://downloadcenter.intel.com/Detail_Desc.aspx?DwnldID=23888

b. NUC5i3MY / NUC5i5MY: I2C/GPIO interfaces are not supported for Windows 7

B. Windows 8.1 drivers:

a. DE3815TY: https://downloadcenter.intel.com/Detail_Desc.aspx?DwnldID=24096

b. NUC5i3MY / NUC5i5MY:
https://downloadcenter.intel.com/Detail_Desc.aspx?DwnldID=24694&lang=eng&
ProdId=3858

3.2.2 Linux I2C/GPIO drivers

A. DE3815TY: Drivers are provided in standard distributions

B. NUC5i3MY / NUC5i5MY: kernel 3.18rc1 includes the gpio-lynxpoint.c I2C/GPIO
driver source code.

3.3 Operating System API Setup
I2C, GPIO API documentation may be downloaded from Microsoft and Intel websites.

3.3.1 Microsoft Windows I2C/GPIO API collateral

A. Windows 7:

a. DE3815TY: The “Software Developers Manual for Windows 7 IO Driver” is
contained inside the package “Intel Embedded Drivers for Windows* 7 (32 and
64-bit)” found at
https://downloadcenter.intel.com/Detail_Desc.aspx?DwnldID=24548

b. NUC5i3MY / NUC5i5MY: I2C/GPIO interfaces are not supported for Windows 7

B. Windows 8.1:

DE3815TY, NUC5i3MY and NUC5i5MY:

a. I2C: http://msdn.microsoft.com/en-

us/library/windows/hardware/hh450906(v=vs.85).aspx

b. GPIO (IOCTL): http://msdn.microsoft.com/en-

us/library/windows/hardware/hh439515(v=vs.85).aspx

3.3.2 Linux I2C/GPIO API collateral

A. I2C: https://www.kernel.org/doc/Documentation/i2c/

B. GPIO: https://www.kernel.org/doc/Documentation/gpio/

(Very useful reference: https://www.kernel.org/doc/Documentation/gpio/sysfs.txt)

https://downloadcenter.intel.com/Detail_Desc.aspx?DwnldID=23888
https://downloadcenter.intel.com/Detail_Desc.aspx?DwnldID=24096
https://downloadcenter.intel.com/Detail_Desc.aspx?DwnldID=24694&lang=eng&ProdId=3858
https://downloadcenter.intel.com/Detail_Desc.aspx?DwnldID=24694&lang=eng&ProdId=3858
https://downloadcenter.intel.com/Detail_Desc.aspx?DwnldID=24548
http://msdn.microsoft.com/en-us/library/windows/hardware/hh450906(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/hh450906(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/hh439515(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/hh439515(v=vs.85).aspx
https://www.kernel.org/doc/Documentation/i2c/
https://www.kernel.org/doc/Documentation/gpio/
https://www.kernel.org/doc/Documentation/gpio/sysfs.txt

10

3.4 Code Samples
The following examples illustrate functionality of the GPIO and I2C interfaces (and PWM

for DE3815TY). Linux examples were tested using Ubuntu 15.04.

3.4.1 Linux GPIO

GPIO signals under Linux are identified by adding the signal’s offset to the base address

of its controller. The GPIO controller base addresses documented below were observed

when testing under Ubuntu 15.04.

Note for DE3815TY:

There are three GPIO controllers on DE3815TY, which can be listed with the

following command.

 ls -la /sys/class/gpio

Only one of these controllers supports the GPIO signals exposed on the Custom

Solutions header. In order to determine the base address of such controller, run the

following command for each of the “gpiochipXYZ” devices listed under

/sys/class/gpio/ (where XYZ is a number).

 cat /sys/class/gpio/gpiochipXYZ/ngpio

The device where the above command reveals an ngpio value of 102 is the controller

we are interested in. The “XYZ” value of this filename is the base address of the

controller. In order to determine the absolute GPIO signal addresses, add this “XYZ”

value (controller base address) to the signal offset address listed for each pin on

Table 1.

For example, here is a screenshot after running the above commands on Ubuntu

15.04

Therefore, the GPIO controller base address under Ubuntu 15.04 is 410. Using

DE3815TY’s pin11 as an example, its absolute address (adding the controller base

address (410) to pin11’s offset address (94)) would be 504.

11

Note for NUC5i3MY / NUC5i5MY:

In order to determine the base addresses of the GPIO controller, run the following

command:

 ls -la /sys/class/gpio

This should reveal a file named gpiochipXYZ, where “XYZ” is the controller base

address which should be added to the GPIO signal offset address shown in Table 2

to calculate GPIO absolute addresses under Linux.

The above screenshot shows a controller base address of 418 under Ubuntu 15.04.

Notes:

If you see a file permissions error please use the following commands to set the

correct read/write permissions:

 sudo chmod 202 export unexport

 sudo chmod 646 active_low direction uevent value

To confirm if your pin is active and to retrieve a list of available GPIO pins on the

device and their status, do the following and save the file to the desktop or

another easily accessible location:

 cd Desktop

 sudo cat /sys/kernel/debug/gpio >> gpiopins.txt

Look through the file and find the controller with base address that we are

interested in (410). Pins that are listed as Sysfs and in/out or just out, are user

editable pins.

12

With the information given above you can create the GPIO port by echoing into

the editable pins.

Examples:

Using pin13 of the Custom Solutions header on DE3815TY:

Note: Ensure pin 13 is set as a GPIO signal in the BIOS.

Create GPIO port:

 echo 489 > /sys/class/gpio/export

To use GPIO as input (read), set the direction variable to “in”, and then read the

value variable:

 echo in > /sys/class/gpio/gpio489/direction

 cat /sys/class/gpio/gpio489/value

To use GPIO as output (write), set the direction variable to “out”, then set the value

variable to “0” or “1”:

 echo out > /sys/class/gpio/gpio489/direction

 echo 1 > /sys/class/gpio/gpio489/value

Note: Output voltage level is driven by the value variable correlated with the

active_low variable (i.e. when active_low is set to “0”, output voltage is 0V if value is

set to “0”).

To close the port:

 echo 489 > /sys/class/gpio/unexport

13

3.4.2 Linux I2C

Note: Ensure that header pins are properly configured to the desired I2C bus. For this example,

pins 13 & 14 must be set to I2C0_CLK/DATA in the BIOS.

I2C under Linux was tested using the opensource Designware* I2C driver and i2c-tools*

package available on many distributions.

I2C bus 0 example using pins 13 & 14 of the Custom Solutions header on DE3815TY:

To show which I2C buses are active on the system:

 sudo i2cdetect –l

Note: If the above command produces no results try running the following command,

then repeat the previous command:

 sudo modprobe i2c-dev

To show which addresses on the selected I2C bus (I2C bus 0 in this example) have

an I2C device:

 sudo i2cdetect -r 0

Note: The above command refers to I2C bus 0 (I2C0_CLK/DATA pins 13/14). To

refer to I2C bus 1 (I2C1_CLK/DATA pins 15/16) replace “0” with “1” in the above

command.

3.4.3 Linux PWM (DE3815TY only)

Note: Ensure that header pins are properly configured to the desired PWM signal. For this

example, pin 11 must be set to PWM[0] in the BIOS.

PWM configuration parameters:

 period: sets the PWM signal period in nanoseconds (valid range is 80ns to

100000ns, with 40ns increments)

 duty_cycle: sets the duty cycle in nanoseconds (valid range is 80ns to

100000ns, with 40ns increments)

 enable: enables or disables the PWM signal (“1” is enabled, “0” is disabled)

14

An example of PWM[0] using pin11 of the Custom Solutions header of DE3815TY, with

a period of 100000ns and a duty cycle of 75000ns:

 cd /sys/class/pwm/pwmchip1

 echo 0 > export

 cd pwm0

 echo 100000 > period

 echo 75000 > duty_cycle

 echo 1 > enable

4.0 Additional References

From WinHEC:

http://video.ch9.ms/sessions/winhec/2015/files/DDF300%20-%20Accessing%20GPIO,%20I2C,

%20and%20UART%20Devices.pptx

MSDN reference on SPB:

https://msdn.microsoft.com/en-us/library/windows/hardware/dn915108(v=vs.85).aspx

Microsoft driver samples on SPB interface:

https://github.com/Microsoft/Windows-driver-samples/tree/master/spb/SpbTestTool

http://video.ch9.ms/sessions/winhec/2015/files/DDF300%20-%20Accessing%20GPIO,%20I2C,%20and%20UART%20Devices.pptx
http://video.ch9.ms/sessions/winhec/2015/files/DDF300%20-%20Accessing%20GPIO,%20I2C,%20and%20UART%20Devices.pptx
https://msdn.microsoft.com/en-us/library/windows/hardware/dn915108(v=vs.85).aspx
https://github.com/Microsoft/Windows-driver-samples/tree/master/spb/SpbTestTool

